Domain Identification for a Nonlinear Elliptic Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Extremely Scalable Nonlinear Domain Decomposition Methods for Elliptic Partial Differential Equation

The solution of nonlinear problems, e.g., in material science requires fast and highly scalable parallel solvers. FETI-DP (Finite Element Tearing and Interconnecting) domain decomposition methods are parallel solution methods for implicit problems discretized by finite elements. Recently, nonlinear versions of the well-known FETI-DP methods for linear problems have been introduced. In these met...

متن کامل

Domain Identification Problem for Elliptic Hemivariational Inequalities

The domain identification problems for the elliptic hemivariational inequalities are studied. These problems are formulated as the optimal control problems with admissible domains as controls. The existence of optimal shapes is obtained by the direct method of calculus of variations for a l.s.c. cost functional.

متن کامل

Invariant Manifold of Hyperbolic-elliptic Type for Nonlinear Wave Equation

It is shown that there are plenty of hyperbolic-elliptic invariant tori, thus quasiperi-odic solutions for a class of nonlinear wave equations.

متن کامل

A Nonlinear Differential Equation Related to the Jacobi Elliptic Functions

A nonlinear differential equation for the polar angle of a point of an ellipse is derived. The solution of this differential equation can be expressed in terms of the Jacobi elliptic function dn u,k . If the polar angle is extended to the complex plane, the Jacobi imaginary transformation properties and the dependence on the real and complex quarter periods can be described. From the differenti...

متن کامل

A Fourth Order Elliptic Equation with Nonlinear Boundary Conditions

In this paper we study the existence of infinitely many nontrivial solutions of the following problem, −∆2u = u in Ω, − ∂∆u ∂ν = f(x, u) on ∂Ω, and either ∂u ∂ν = 0 or ∆u = 0 on ∂Ω. We assume that f(x, u) is superlinear and either subcritical or a sublinear perturbation of the critical case. For the proof in the critical case we apply the concentration compactness method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen

سال: 1998

ISSN: 0232-2064

DOI: 10.4171/zaa/864